Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.595
Filtrar
1.
Chem Commun (Camb) ; 60(31): 4140-4147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38566603

RESUMO

Superoxide dismutase (SOD) is an important metalloenzyme that catalyzes the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). However, the clinical application of SOD is severely limited due to its structural instability and high cost. Compared with natural enzymes, nanomaterials with enzyme-like activity, nanoenzymes, are more stable, economical and easy to modify and their activity can be adjusted. Certain nanozymes that exhibit SOD-like activity have been created and shown to help prevent illnesses brought about by oxidative stress. These SOD-like nanozymes offer an important solution to the problems associated with the clinical application of SOD. In this review, we briefly introduce neurodegenerative diseases, present the research progress of SOD-like nanoenzymes in the diagnosis and treatment of brain diseases, review their mechanism of action in the treatment and diagnosis of brain diseases, and discuss the shortcomings of the current research with a view to providing a reference for future research. We expect more highly active SOD-like nanoenzymes to be developed with a wide range of applications in the diagnosis and treatment of brain diseases.


Assuntos
Encefalopatias , Superóxido Dismutase , Humanos , Superóxido Dismutase/metabolismo , Peróxido de Hidrogênio/química , Superóxidos/química , Estresse Oxidativo , Oxigênio , Encefalopatias/diagnóstico , Encefalopatias/tratamento farmacológico
2.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619265

RESUMO

Reactive oxygen species (ROS) are highly unstable oxygen-containing molecules. Their chemical instability makes them extremely reactive and gives them the ability to react with important biological molecules such as proteins, nucleic acids, and lipids. Superoxide anions are important ROS generated by the reduction of molecular oxygen reduction (i.e., acquisition of one electron). Despite their initial implication exclusively in aging, degenerative, and pathogenic processes, their participation in important physiological responses has recently become apparent. In the vascular system, superoxide anions have been shown to modulate the differentiation and function of vascular smooth muscle cells, the proliferation and migration of vascular endothelial cells in angiogenesis, the immune response, and the activation of platelets in hemostasis. The role of superoxide anions is particularly important in the dysregulation of platelets and the cardiovascular complications associated with a plethora of conditions, including cancer, infection, inflammation, diabetes, and obesity. It has, therefore, become extremely relevant in cardiovascular research to be able to effectively measure the generation of superoxide anions by human platelets, understand the redox-dependent mechanisms regulating the balance between hemostasis and thrombosis and, eventually, identify novel pharmacological tools for the modulation of platelet responses leading to thrombosis and cardiovascular complications. This study presents three experimental protocols successfully adopted for the detection of superoxide anions in platelets and the study of the redox-dependent mechanisms regulating hemostasis and thrombosis: 1) dihydroethidium (DHE)-based superoxide anion detection by flow cytometry; 2) DHE-based superoxide anion visualization and analysis by single platelet imaging; and 3) spin probe-based quantification of superoxide anion output in platelets by electron paramagnetic resonance (EPR).


Assuntos
Superóxidos , Trombose , Humanos , Espécies Reativas de Oxigênio , Células Endoteliais , Oxigênio
3.
Physiol Rep ; 12(8): e16021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639714

RESUMO

We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 µM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.


Assuntos
Óxidos N-Cíclicos , Iminas , Óxido Nítrico , Marcadores de Spin , Vasodilatação , Humanos , Adulto Jovem , Óxido Nítrico/farmacologia , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Superóxidos , Vasodilatação/fisiologia , Negro ou Afro-Americano , Brancos
4.
Methods Mol Biol ; 2798: 11-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587733

RESUMO

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.


Assuntos
Superóxidos , Tilacoides , Oxigênio Singlete , Espécies Reativas de Oxigênio , Detecção de Spin , Ânions
5.
Methods Mol Biol ; 2798: 205-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587745

RESUMO

Superoxide and hydrogen peroxide are reactive oxygen species (ROS) involved in the oxidation of multiple biological molecules and the signaling processes during plant growth and stress response. Thus, control of ROS is fundamental for cell survival and development, with superoxide dismutase (EC 1.15.1.1, SOD) being one of the main enzymes involved. Different isoforms of SOD catalyze the dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2) and oxygen (O2), such as Mn-SODs, Cu,Zn-SODs, and Fe-SODs. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) combined with a specific staining method for SOD activity, the protocol describes the identification of different SOD isozymes, based on their differential inhibition by KCN and H2O2, in different organs and plant species such as pea (Pisum sativum L.) leaves and pepper (Capsicum annuum L.) fruits.


Assuntos
Isoenzimas , Superóxido Dismutase , Superóxidos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Frutas , Oxigênio , Ervilhas
6.
PeerJ ; 12: e17068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495756

RESUMO

The aim of this experiment was to investigate the effects of exogenous sprays of 5-aminolevulinic acid (5-ALA) and 2-Diethylaminoethyl hexanoate (DTA-6) on the growth and salt tolerance of rice (Oryza sativa L.) seedlings. This study was conducted in a solar greenhouse at Guangdong Ocean University, where 'Huanghuazhan' was selected as the test material, and 40 mg/L 5-ALA and 30 mg/L DTA-6 were applied as foliar sprays at the three-leaf-one-heart stage of rice, followed by treatment with 0.3% NaCl (W/W) 24 h later. A total of six treatments were set up as follows: (1) CK: control, (2) A: 40 mg⋅ L-1 5-ALA, (3) D: 30 mg⋅ L-1 DTA-6, (4) S: 0.3% NaCl, (5) AS: 40 mg⋅ L-1 5-ALA + 0.3% NaCl, and (6) DS: 30 mg⋅ L-1 DTA-6+0.3% NaCl. Samples were taken at 1, 4, 7, 10, and 13 d after NaCl treatment to determine the morphology and physiological and biochemical indices of rice roots. The results showed that NaCl stress significantly inhibited rice growth; disrupted the antioxidant system; increased the rates of malondialdehyde, hydrogen peroxide, and superoxide anion production; and affected the content of related hormones. Malondialdehyde content, hydrogen peroxide content, and superoxide anion production rate significantly increased from 12.57% to 21.82%, 18.12% to 63.10%, and 7.17% to 56.20%, respectively, in the S treatment group compared to the CK group. Under salt stress, foliar sprays of both 5-ALA and DTA-6 increased antioxidant enzyme activities and osmoregulatory substance content; expanded non-enzymatic antioxidant AsA and GSH content; reduced reactive oxygen species (ROS) accumulation; lowered malondialdehyde content; increased endogenous hormones GA3, JA, IAA, SA, and ZR content; and lowered ABA content in the rice root system. The MDA, H2O2, and O2- contents were reduced from 35.64% to 56.92%, 22.30% to 53.47%, and 7.06% to 20.01%, respectively, in the AS treatment group compared with the S treatment group. In the DS treatment group, the MDA, H2O2, and O2- contents were reduced from 24.60% to 51.09%, 12.14% to 59.05%, and 12.70% to 45.20%. In summary, NaCl stress exerted an inhibitory effect on the rice root system, both foliar sprays of 5-ALA and DTA-6 alleviated damage from NaCl stress on the rice root system, and the effect of 5-ALA was better than that of DTA-6.


Assuntos
Antioxidantes , Oryza , Humanos , Antioxidantes/metabolismo , Plântula , Reguladores de Crescimento de Plantas/farmacologia , Peróxido de Hidrogênio/farmacologia , Cloreto de Sódio/farmacologia , Superóxidos/farmacologia , Estresse Oxidativo , Oxigênio/farmacologia , Hormônios/farmacologia , Malondialdeído/farmacologia
7.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
8.
J Am Chem Soc ; 146(12): 7915-7921, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488295

RESUMO

A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.


Assuntos
Ferro , Superóxidos , Compostos Ferrosos , Oxigênio
9.
Anal Chem ; 96(11): 4632-4638, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457631

RESUMO

Superoxide anion (O2•-) plays a pivotal role in the generation of other reactive oxygen species within the body and is closely linked to epilepsy. Despite this connection, achieving precise imaging of O2•- during epilepsy pathology remains a formidable challenge. Herein, we develop an activatable molecular probe, CL-SA, to track the fluctuation of the level of O2•- in epilepsy through simultaneous fluorescence imaging and chemiluminescence sensing. The developed probe CL-SA demonstrated its efficacy in imaging of O2•- in neuronal cells, showcasing its dual optical imaging capability for O2•- in vitro. Furthermore, CL-SA was successfully used to observe aberrantly expressed O2•- in a mouse model of epilepsy. Overall, CL-SA provides us with a valuable tool for chemical and biomedical studies of O2•-, promoting the investigation of O2•- fluctuations in epilepsy, as well as providing a reliable means to explore the diagnosis and therapy of epilepsy.


Assuntos
Sondas Moleculares , Superóxidos , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio , Células Hep G2 , Imagem Óptica/métodos , Corantes Fluorescentes/química
10.
Biosens Bioelectron ; 254: 116228, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522233

RESUMO

Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOT:PSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 µM and 1.34 µM-42.97 µM) with corresponding sensitivity of 0.479 and 0.052 µA µM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 µM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.


Assuntos
Técnicas Biossensoriais , Grafite , Superóxidos/química , Carboximetilcelulose Sódica , Peróxido de Hidrogênio , Superóxido Dismutase-1 , Técnicas Biossensoriais/métodos , Grafite/química , Superóxido Dismutase/química , Técnicas Eletroquímicas
11.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460742

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Assuntos
Artérias , NADPH Oxidases , Ratos , Masculino , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADP , Metoxamina , Artérias/fisiologia , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Superóxidos/metabolismo
12.
Front Immunol ; 15: 1359600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515749

RESUMO

The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Oxirredução , Estresse Oxidativo , Ácido Hipocloroso , Imunidade Inata
13.
J Hazard Mater ; 469: 133805, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428293

RESUMO

It has been reported that Cr(VI) can be reduced by biochar because of its redox activity. Considering the anionic form of Cr(VI), we hypothesize that the reduction in aqueous phase is significant. However, the contribution of different reactive oxygen species in the biochar-Cr(VI) reaction system has not been distinguished. Herein, we quantitatively identified Cr(VI) adsorption and reduction in biochar systems. The reduction content of Cr(VI) was 1.5 times higher in untreated conditions than in anaerobic conditions. The disappearance of·O2- under anaerobic conditions illustrated that·O2- may be involved in the reduction of Cr(VI). Quenching of·O2- resulted in a decrease of Cr(VI) reduction by 34%, while 1O2 was negligible, probably due to the stronger electron-donating capacity of·O2-. The degradation of nitrotetrazolium blue chloride (quenching agent of·O2-) confirmed that the reduction process of·O2- mainly occurred in the liquid-phase. Boehm titration and quantification of·O2- further elucidated the significant correlation (P < 0.05) between phenolic groups and the formation of·O2-, which implied that phenolic groups acted as the primary electron donors in generating·O2-. This study highlights the importance of the liquid-phase reduction process in removing Cr(VI), which provides theoretical support for biochar conversion of Cr(VI).


Assuntos
Superóxidos , Poluentes Químicos da Água , Carvão Vegetal , Cromo/análise , Adsorção , Poluentes Químicos da Água/análise
14.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38516911

RESUMO

Stomatal guard cells are unique in that they have more mitochondria than chloroplasts. Several reports emphasized the importance of mitochondria as the major energy source during stomatal opening. We re-examined their role during stomatal closure. The marked sensitivity of stomata to both menadione (MD) and methyl viologen (MV) demonstrated that both mitochondria and chloroplasts helped to promote stomatal closure in Arabidopsis. As in the case of abscisic acid (ABA), a plant stress hormone, MD and MV induced stomatal closure at micromolar concentration. All three compounds generated superoxide and H2O2, as indicated by fluorescence probes, BES-So-AM and CM-H2DCFDA, respectively. Results from tiron (a superoxide scavenger) and catalase (an H2O2 scavenger) confirmed that both the superoxide and H2O2 were requisites for stomatal closure. Co-localization of the superoxide and H2O2 in mitochondria and chloroplasts using fluorescent probes revealed that exposure to MV initially triggered higher superoxide and H2O2 generation in mitochondria. In contrast, MD elevated superoxide/H2O2 levels in chloroplasts. However, with prolonged exposure, MD and MV induced ROS production in other organelles. We conclude that ROS production in mitochondria and chloroplasts leads to stomatal closure. We propose that stomatal guard cells can be good models for examining inter-organellar interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo
15.
Arch Toxicol ; 98(5): 1323-1367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483584

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., ß-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Superóxidos , Ácido Peroxinitroso/farmacologia , Antocianinas/metabolismo , Antocianinas/farmacologia , Estresse Oxidativo , Óxido Nítrico , Superóxido Dismutase/metabolismo , Doença Crônica
16.
Life Sci ; 343: 122488, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428573

RESUMO

AIM: The present study evaluated whether topiramate (TPM) treatment during the peripubertal period affects vascular parameters of male rats and whether oxidative stress plays a role in these changes. MAIN METHODS: Rats were treated with TPM (41 mg/kg/day, gavage) or vehicle (CTR group) from the postnatal day (PND) 28 to 50. At PND 51 and 120 the rats were evaluated for: thoracic aorta reactivity to phenylephrine, in the presence (Endo+) or absence of endothelium (Endo-), to acetylcholine and to sodium nitroprusside (SNP), aortic thickness and endothelial nitric oxide synthase (eNOS) expression. In serum were analyzed: the antioxidant capacity by ferric reducing antioxidant power assay; endogenous antioxidant reduced glutathione, and superoxide anion. Results were expressed as mean ± s.e.m., differences when p < 0.05. STATISTICS: Two-way ANOVA (and Tukey's) or Student t-test. KEY FINDINGS: At PND 51, the contraction induced by phenylephrine in Endo+ ring was higher in TPM when compared to CTR. At PND 120, the aortic sensitivity to acetylcholine in TPM rats was reduced in comparison with CTR. The aortic eNOs expression and the aortic thickness were similar between the groups. At PND 51 and 120, TPM group presented a decrease in antioxidants when compared to CTR groups and at PND 120, in TPM group the superoxide anion was increased. SIGNIFICANCE: Taken together, the treatment of rats with TPM during peripubertal period promoted permanent impairment of endothelial function probably mediated by oxidative stress.


Assuntos
Acetilcolina , Antioxidantes , Ratos , Animais , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Topiramato/farmacologia , Acetilcolina/metabolismo , Superóxidos/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Aorta Torácica/metabolismo , Fenilefrina/farmacologia , Óxido Nítrico/metabolismo
17.
Toxicology ; 503: 153768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442839

RESUMO

The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.


Assuntos
Venenos de Abelha , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Venenos de Abelha/toxicidade , DNA/metabolismo , Dano ao DNA , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos
18.
Physiol Plant ; 176(2): e14252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509813

RESUMO

Recent studies have demonstrated the crucial role of Cytochrome P450 enzymes (CYPs) in the production of secondary metabolites, phytohormones and antioxidants in plants. However, their functional characterization specifically under alkaline stress remains elusive. CYP82C4 was the key gene screened from a family of wild soybean CYPs in our previous studies. The aim of this present study was to clone the Glycine soja GsCYP82C4 gene and characterize its functions in Arabidopsis and Glycine max. The results showed that the GsCYP82C4 gene displayed a high expression in different plant tissues at mature stages compared to young stages. Further, higher temporal expression of the GsCYP82C4 gene was noted at 6, 12 and 24 h time points after alkali treatment in leaves compared to roots. In addition, overexpression of GsCYP82C4 improved alkaline stress tolerance in Arabidopsis via increased root lengths and fresh biomass and strengthened the antioxidant defense system via a reduction in superoxide radicals in transgenic lines compared to wild type (WT) and atcyp82c4 mutants. Further, the expression levels of stress-related marker genes were up-regulated in GsCYP82C4 OX lines under alkali stress. The functional analysis of GsCYP82C4 overexpression in soybean displayed better hairy root growth, increased fresh weight, higher antioxidant enzyme activities and reduced lipid peroxidation rates in OX lines compared to the soybean WT (K599) line. In total, our study displayed positive roles of GsCYP82C4 overexpression in both Arabidopsis and Glycine max to alleviate alkaline stress via altering expression abundance of stress responsive genes, stronger roots, higher antioxidant enzyme activities as well as reduced rates of lipid peroxidation and superoxide radicals.


Assuntos
Arabidopsis , Fabaceae , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/genética , Soja/genética , Álcalis/metabolismo , Glicina/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
19.
J Ethnopharmacol ; 328: 118021, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492793

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY: In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS: First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS: In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-ß, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-ß, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-ß signalling pathways to exert its influence. CONCLUSION: The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.


Assuntos
Flavonas , Gravidez , Animais , Camundongos , Humanos , Feminino , Flavonas/farmacologia , Metaloproteinase 9 da Matriz , Peixe-Zebra , Superóxidos , Galactose , Proteínas Quinases Ativadas por AMP , China , Antioxidantes/farmacologia , Flavonoides/farmacologia , Sementes , Elastase Pancreática , Fator de Crescimento Transformador beta , Serina-Treonina Quinases TOR
20.
Anal Chim Acta ; 1298: 342410, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462334

RESUMO

Ferroptosis is an emerging iron-dependent oxidative cell death type, and recently has been demonstrated to show close relation with Golgi apparatus (GA). Exploring the fluctuation of superoxide anion (O2•-) level in GA during ferroptosis is of great significance to profoundly study the biological functions of GA in ferroptosis. Here, we present a GA-targeting probe (N-GA) to monitor cellular O2•- during ferroptosis. N-GA employed a triflate group and a tetradecanoic amide unit as the recognition site for O2•- and GA-targeting unit, respectively. After the response of N-GA to O2•-, the triflate unit of N-GA converted into hydroxyl group with strong electron-donating ability, generating bright green fluorescence under UV light. N-GA exhibited excellent sensitivity and selectivity towards O2•-. Fluorescence imaging results showed that N-GA could be applied as a GA-targeting probe to monitor cellular O2•-. The stimulation of cells with PMA and rotenone could result in the massive generation of endogenous O2•- in GA. Erastin-induced ferroptosis can markedly induce the increase of O2•- level in GA. Similar to Fer-1 and DFO, dihydrolipoic acid (DHLA) and rutin were demonstrated to inhibit the enormous production of O2•- in GA of the living cells during ferroptosis.


Assuntos
Ferroptose , Superóxidos , Corantes Fluorescentes/toxicidade , Ferro , Complexo de Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...